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Abstract

This paper proposes parallel algorithms for precipitation of flood modelling, especially applied in spatial rainfall distribution.
As an important input in flood modelling, spatial distribution of rainfall is always needed as a pre-conditioned model. In
this paper two interpolation methods, Inverse distance weighting (IDW) and Ordinary kriging (OK) are discussed. Both
are developed in parallel algorithms in order to reduce the computational time. To measure the computation efficiency, the
performance of the parallel algorithms are compared to the serial algorithms for both methods. Findings indicate that: (1)
the computation time of OK algorithm is up to 23% longer than IDW; (2) the computation time of OK and IDW algorithms is
linearly increasing with the number of cells/ points; (3) the computation time of the parallel algorithms for both methods is
exponentially decaying with the number of processors. The parallel algorithm of IDW gives a decay factor of 0.52, while OK
gives 0.53; (4) The parallel algorithms perform near ideal speed-up.
keywords: rainfall, Inverse distance weighting, Ordinary kriging, parallel algorithm

Abstrak

Tulisan ini menyajikan mengenai algoritma paralel untuk presipitasi dalam model banjir, khususnya diaplikasikan dalam
distribusi spasial untuk data curah hujan. Sebagai salah satu masukan penting dalam pemodelan banjir, distribusi spasial
dari presipitasi selalu diperlukan sebagai pre-model banjir. Dalam paper ini, dua metode interpolasi yaitu Inverse Distance
Weighting (IDW) dan Ordinary Kriging (OK) akan dibahas. Kedua metode tersebuat akan dikembangkan dalam algoritma
paralel dengan tujuan untuk mengurangi waktu komputasi. Untuk mengukur efisiensi komputasi, hasil komputasi dengan
algoritma paralel akan dibandingkan dengan versi serial algoritma. Tulisan ini menyimpulkan bahwa (1) waktu komputasi
algoritma OK lebih lama hingga 23% daripada IDW; (2) waktu komputasi dari kedua algoritma tersebut meningkat secara
linier terhadap jumlah titik; (3) algoritma paralel dari kedua metode menurunkan waktu komputasi secara exponential terhadap
jumlah prosessor yang digunakan dengan faktor penurunan 0.52 untuk IDW and 0.53 untuk OK; (4) Kedua algoritma paralel
menunjukkan speed-up yang hampir ideal.
kata kunci: Curah hujan, Inverse distance weighting, Ordinary kriging, Algoritma paralel

1. INTRODUCTION

The spatial distribution of precipitation is one key
input data for hydrological model, such as flood
model. In flood modelling, precipitation plays an
important role as the source term ([1], [2]). The
radar measurement and rain gauge measurement
may present the precipitation data at some locations,
but the full data of the spatial distribution of the
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precipitation in a large area is still limited. There
are two ways to produce the spatial distribution
of the precipitation by interpolation of the limited
measured data; conventional method and geo-
statistical method. Spatial data often face a problem
in the numerical computation. To compute the
spatial distribution of the precipitation in a large
area or in a fine grid, huge data will be produced
and a high computing power must be needed.
One potential way to deal with it is executing the
algorithm of the methods in parallel architecture,
which should increase the computation efficiency.
According to [3], the parallel architecture may be
one of SIMD (Single Instruction Multiple Data),
MISD (Multiple Instruction Single Data), MIMD
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(Multiple Instruction Multiple Data), and SIMD-
MIMD architectures.

In this paper we discuss two interpolators to
compute the spatial distribution of the precipitation,
one conventional method namely Inverse Distance
Weighting and one geo-statistical method namely
Ordinary Kriging. Implementation of these
interpolators can be found in the studies of ([4],
[5], [6]). In addition, we implement the methods for
data of rainfall measurements at some rain gauges
in Jakarta area and surroundings.

Recent study of [7] also implements IDW method
in parallel algorithm. The paper measures the
speed up of the algorithm performance in GPU
versus CPU. References [8], [9] and [10] implement
Kriging method on high performance computing.
The paper of [8] analyze the computation time of the
parallel Kriging algorithm according to the size of
the known points and to the size of the target spatial
area. It is quite similar to the study of [9] that the
parallel performance was conducted because of the
huge size of the known points. Different from these
studies, we aim to compare the parallel and the serial
algorithms and we analyze the computation time of
the parallel algorithms according to the increasing
number of computer cores. Study of [11] proposed
a parallel algorithm of IDW using MIMD parallel
processing environment. In this paper the algorithms
are written via scripts in the Python language and
we propose SIMD construction in Message Passage
Interface program for Python. Some applications of
parallel computing using SIMD environment can be
found in many subjects ([12], [13], [14]).

The outline of this paper is divided into five
sections, started by Introduction which covers the
motivation and background. Second section presents
the materials and methods used in this paper. There
is also brief description about Inverse Distance
Weighting and Ordinary Kriging. An overview about
the methods are presented for the benefit for the
readers who are not familiar with the methods. The
serial algorithm for both methods are also presented.
In the third section, the proposed parallel algorithms
are discussed. Results and analysis are presented in
the fourth section. Finally, the last section delivers
conclusion and some recommendations.

2. MATERIAL AND METHODS

2.1 Data set

We chose area of Jakarta, the capital of Indonesia
and surrounding as the study case with area
approximately 900[km2]. The data of the rainfall
rate measurement were taken from 14 rain gauge
stations on 13 January 2014 as presented in Table
I. The first eleven data in Table I were collected
from the Buletin BMKG, January 2014 [15]. The last

three data (Pasar Minggu, Halim, Kedoya) are cited
from the official website of BMKG [16].

Table I. Sample data of rainfall rate
No Station Position Rate

x0E y0S [mm/day]
1 Karet 106.81 -6.19 48
2 Istana 106.84 -6.18 69
3 Tomang Barat 106.88 -6.24 55
4 Pulo Gadung 106.90 -6.19 62
5 Pakubuwono 106.79 -6.24 90
6 Pondok Betung 106.76 -6.25 81.6
7 Lebak Bulus 106.77 -6.29 128
8 Kemayoran 106.85 -6.18 79
9 Tanjung Priok 106.89 -6.13 50
10 Cengkareng 106.70 -6.14 16
11 Depok 106.75 -6.40 122
12 Pasar Minggu 106.89 -6.26 100
13 Halim 106.75 -6.18 104.2
14 Kedoya 106.84 -6.29 69.5

2.2 Hardware

The parallel algorithms were conducted in a
computer cluster provided by Research Center for
Informatics, Indonesian Institute of Sciences, with
the following specifications;

—16 nodes
—2 processors per node, 4 cores per processor
—Dual Intel Xeon E5-2609 2,4 GHz
—8 GB RAM DDR3-1600
—500 GB HD SATA
—Dual Gigabit interconnection
—NVIDIA Tesla M2075 GPGPU
—Linux (CentOS)

Moreover we only investigate the numerical
computation with the working nodes up to 4 as the
computation needs 25 cores.

2.3 Inverse Distance Weigthing

Inverse distance weighting (IDW) is one
simplest conventional interpolator to estimate
the precipitation distribution. This interpolator
assumes that the nearby values will contribute more
to the estimated (unknown) values than the distant
observations [17]. Consequently, the measured
points are always maximum than the surrounding
(the intensity of rainfall around the measured points
is always larger); this behaviour is known as a bull
eye’s effect . Furthermore we will work on the
algorithm of IDW power 2 under assumption that all
the measured data give influences to the unknown
points, even though the measured data are far away
from the unknown points. Basically, IDW works
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by a weight function that is functioned of distance
between the unknown points and the measured
points (square of distance is used for IDW power 2).

For given a set of N measured points,
(x1,x2, · · · ,xN), with corresponding precipitation
data, (u1, u2, · · · , uN), IDW estimates the
precipitation at the unknown points y by the
following algorithm:

for each y

λj(y) =
1

|y − xj|2

u∗(y) =
1∑N

j=1 λj(y)

N∑
j=1

(λj(y)uj)

The variable λj(y) denotes the weight function,
while u∗(y) is the estimated precipitation at points

y 6= xj. The term of
1∑N

j=1 λj(y)
is generally

functioned to normalize the weight function, so that
the weight function will be restricted in [0, 1].

2.4 Ordinary Kriging

The best known geo-statistical interpolator is
Ordinary Kriging [18]. This method is commonly
used in geophysics community. It involves a
stochastic pre-model to estimate the precipitation
distribution. This interpolator is also based on
weighted linear combination of the measured
data as in IDW. In Ordinary kriging (OK),
the weight function depends on the stochastic
pre-model, so-called semivariogram model. The
semivariogram model is chosen according to the
experimental semivariogram computed from the
measured data. It is a function of distance between
two points. The best fit model is chosen as
the empirical semivariogram. It could be one of
the spherical, exponential or gaussian function.
Meanwhile, the experimental semivariogram, γij , is
defined mathematically by the following expression:

γij =
1

2N(h)

N(h)∑
n=1

E
[
|un − un+h|2

]
(1)

in which N(h) denotes the number of points
separated by the same distance h. If the empirical
semivariogram has been chosen, we first compute
the pre-model as below,

γ̃ij = γ̃(|xi − xj|)

M =


γ̃11 · · · γ̃1N 1

...
. . .

...
...

γ̃N1 · · · γ̃NN 1
1 · · · 1 0


then the estimation of the precipitation is then
computed by the following algorithm:

for each y
γ̃i0 = γ̃(xi − y)

λ(y) =


λ1(y)

...
λN(y)
µ

 = M−1 ·


γ̃10

...
γ̃N0

1


u∗(y) =

N∑
j=1

(λj(y)uj)

The function γ̃ij is a function chosen as the empirical
semivariogram model. The variable µ inside matrix
M denotes the estimation error for each unknown
point, which we will not discuss further in this paper.

3. PARALLEL ALGORITHMS

We propose two parallel algorithms of precipitation
distribution based on Inverse distance weighting
and Ordinary Kriging. The proposed parallel
algorithms use single instruction multiple data
(SIMD) construction. Spatial data is arranged in 2D
manner. Let us assume the algorithms uses ` = p2

cores. Then, the spatial domain is subdivided into
` 2D-subarea. Each core is given an index number i
from 0 to `−1 as shown in Figure 5 and computes the
precipitation for subarea i. To simplify the parallel
algorithms we divide the grid of the x−coordinate
and y−coordinate with the same value. In other
words, the area is divided quadratically, so we
choose square numbers for the number of cores. We
executed the parallel algorithms for both methods
with 1, 4, 9, 16, and 25 cores.

Basically the parallel algorithms for IDW and OK
are similar. The first step of the parallel algorithms
for both methods is sharing the measured points
and its precipitation data. Then, each core computes
locally the estimated data of the unknown points.
One additional step in parallel version for OK is
that it needs pre-computation for computing matrix
M−1 before the local computation. As the matrix
is a function of distance between two measured
points, there will be problematic when the number
of measured points are getting larger. The numerical
computation of the inverse matrix will be very costly,
then it should be in parallel computing as suggested
by [9]. Nevertheless, in this paper we do not apply a
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Figure 2. The experimental semivariogram model (dots) and empirical semivariogram models (solid line). The blue line
shows the exponential model with S = 1000 and R = 20. The green line shows the exponential model with S = 4000 and
R = 20.

Figure 1. The 2D spatial data is subdivided into ` = p2

subareas indexed by 0 to `− 1.

parallel algorithm in computing the inverse matrix as
our measured points are few. We use a numpy library
in Python for computing the inverse matrix.

4. RESULTS AND ANALYSIS

We computed the semivariogram model from the
measured data and then we find the best fit empirical

model. The experimental semivariogram is shown in
Figure 2 together with the empirical semivariogram.
According to the plots the covariance between the
measured points are quite robust. Consequently,
it is difficult to choose the best empirical model
which represents the behaviour of the sample data.
Nevertheless, we choose exponential model as the
empirical semivariogram with the sill S = 4000
and the range R = 20. Sill is the maximum
variance and range is the distance after which the
correlation is zero. The empirical semivariogram
model is formulated by

γ̃(d) = S

(
1− exp

(
−3d
R

))
with d is the distance in [km].

Both methods generally give similar spatial
rainfall distribution. We show the results in the
density plots in Figure 4. The bull’s eye effect could
be observed in the spatial rainfall distribution by
IDW.

We compare the time consumption for the
numerical computation of IDW and OK. We also
observe the time consumption of the algorithms with
increasing number of the points/ cells. It is also
presented in Table II.

Tabel II shows that the computation time for OK
is longer than IDW approximately up to 23%. This
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Figure 3. The upper plot is the spatial rainfall distribution computed by Ordinary Kriging and the lower plot is the spatial
rainfall distribution computed by Ordinary Kriging. The red-dots show the measured points and the blue-dots form the boundary
of Jakarta area.

Table II. Computation time using serial algorithm of IDW
and OK

Cell size [m2] Number of cells Computation time [s]
IDW OK

1000x1000 2.85E+3 0.61 0.74
500x500 1.14E+4 2.39 2.93
250x250 4.56E+4 9.85 11.66
100x100 2.85E+5 59.46 73.23

50x50 1.14E+6 244.83 295.23
10x10 2.85E+7 5994.36 7191.68

is understandable as the weight function for OK’s
algorithm is not as simple as IDW. It needs a

prior computation for the function γ̃i0 in each loop.
In addition we observe that the computation time
(Comp.time) is linearly increasing with the number
of the cells ans is inversely proportional to the cell
size (see Figure 4);

Comp.time ∼ #cells ∼ 1

cell size
In the parallel computations, we analyze the time

consumption for IDW and OK’s algorithms with
increasing number of cores (see Table III). As
we do the computation in multi-cores we average
the computation time from all cores. The result
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Figure 4. Comparison of the computation time of the serial
algorithm of IDW and OK.

is described in Figure 5. From the five different
numbers of cores, the computation time shows an
exponential decay, therefore we approximate their
behaviour by exponential fitting (see Figure 5).

Table III. Computation time using parallel
algorithm of IDW and OK with cell size of

100x100[m2]

# cores Computation time [s] Speed up
IDW OK IDW OK

1 59.46 73.23 1.00 1.00
4 15.09 18.14 3.94 3.98
9 6.72 8.07 8.84 8.94

16 3.78 4.55 15.71 15.88
25 2.56 3.05 23.21 23.65

From the exponential fitting, the time consumption
(denoted by T (`)) for IDW’s algorithm computation
is decaying exponentially by the following formula;

T (`) = 93.68e−0.52` + 3.96

Meanwhile OK’s algorithm decays by the formula
below;

T (`) = 116.63e−0.53` + 4.77

The values of 0.52 in IDW and 0.53 in OK are their
decay factor. The larger the factor, the faster the
computation time decreases.

Moreover we also evaluate the performance of the
parallel algorithms by measuring speed up of both
algorithms (see Table III). Speedup of a parallel
computation is defined as the ratio between the
sequential time and the parallel time to solve the
same problem. We present the speed up curve in
Figure 5. The speed up of both IDW and OK
parallel algorithms are approximately the same.
They are near ideal (linear) speed-up. It shows that

Figure 5. The blue lines represent the computation time
and the red lines present the speed up of both parallel
algorithms with respect to the number of computer cores.
The solid line corresponds to IDW and the dashed-line
corresponds to OK.

the additional computer cores are effectively used
by both algorithms in the SIMD environment. The
inefficiency must be caused by the inter-processor
communication and synchronization in the computer
cluster. This result agrees well to the study of [11]
which also obtained near linear speed-up.

5. CONCLUSIONS

This paper investigated the parallel algorithms of
Inverse Distance Weighting and Ordinary Kriging.
These two algorithms were implemented to compute
the spatial rainfall distribution. The computation
time of Ordinary Kriging takes longer time up
to 23% than Inverse Distance Weighting. This
is understandable as the weight function of
Ordinary Kriging needs a multiplication matrix in
the algorithm. Nevertheless, our proposed parallel
algorithms efficiently reduce the computational
time and the additional computer cores in the
computation is effectively used by the parallel
algorithms in the SIMD architecture. One limitation
of our proposed parallel algorithms is that the
number of cores are restricted by square numbers.

The time consumption for the parallel algorithms
are exponentially decaying with the number of
working cores. The decay factor is 0.52 for IDW
and 0.53 for OK. This concludes that the parallel
algorithm of OK reduces a little faster than IDW.
For a large measured data, the computation of
inverse matrix in the algorithm of OK might be very
costly. Consequently, the parallel algorithm of OK
presented in this paper might need to be improved.
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